Proposal by the Church Commissioners for the Allocation of Land at Chidswell near Dewsbury, West Yorkshire for Mixed Residential and Employment Uses.

Site at Chidswell, North of Dewsbury, West Yorkshire

Highways Objection on behalf of Morley Town Council

Proposal by the Church Commissioners for the Allocation of Land at Chidswell near Dewsbury, West Yorkshire for Mixed Residential and Employment Uses.
 Site at Chidswell, North of Dewsbury, West Yorkshire

Highways Objection on behalf of Morley Town Council

CONTENTS

1 INTRODUCTION 1
2 OBJECTIONS TO THE PROPOSALS 2
2.1 Introduction 2
2.2 Interim Transport Assessment (ITA) Overview 3
2.3 Executive Summary 4
2.4 1-Introduction 5
$2.5 \quad 2$ - Existing Transport Situation 5
2.6 3-Indicative Masterplan Proposals 8
2.7 4-Trip Generation, Assessment and Distribution 8
2.85 - Highway Capacity Assessment 14
2.9 Other Documents 23
3 SUMMARY AND CONCLUSIONS 25
3.1 Summary 25
3.2 Conclusions 26

APPENDICES

Appendix A LCC Application 17 / 08262 / OT - Appendix BGH7 of Transport Assessment
Appendix B TRICS Output - Business Park
Appendix C TRICS Output - Industrial Estate
Appendix D TRICS Output - Warehousing - Commercial and Self Storage
Appendix E 2011 Census - Car Ownership and Modal Split
Appendix F LCC Sites for Concern Extract + Crashmap Screen Print

1 INTRODUCTION

1.1.1 This report has been prepared on behalf of Morley Town Council (MTC) to advise them and the Inspector on the highways and traffic issues related to the proposed allocation of land for a mixed use development at Chidswell to the north of Dewsbury in West Yorkshire.
1.1.2 The area of land being put forward is owned by the Church Commissioners and they appointed White Young Green (WYG) to prepare a transport assessment to consider the traffic impact of the proposals on the adjacent highway network.

WYG initially prepared a Scoping Note dated $21^{\text {st }}$ April 2016 which was submitted to Kirklees Metropolitan Council (KMC) for comment. WYG subsequently produced an "Interim Transport Assessment" (ITA) dated $222^{\text {nd }}$ August 2018 which has been put before the Inspector for consideration.
1.1.4 Section 2 of this report describes and then considers the contents of the ITA by WYG. It will be demonstrated that the ITA provides copious amounts of information and detailed results of analyses but lacks any supporting documentation. It will be shown that the report underestimates the predicted traffic generated by the development and uses flawed base traffic data. A key junction on the A653 Dewsbury Road is omitted from the analyses and those that are undertaken lack supporting drawings, flow diagrams or computer input / output data.
1.1.5 The ITA as submitted is therefore inadequate and misleading / incorrect. The possible deliberate act of omission of full details of the traffic impact of the proposals is considered sufficient that Morley Town Council would respectfully ask the Inspector to instruct the applicant to provide all relevant data / information for public perusal and comment before any further consideration of the proposals is made.

2 OBJECTIONS TO THE PROPOSALS

2.1 Introduction

2.1.1 This report describes and then considers the contents of the ITA by WYG. It will be demonstrated that the ITA provides copious amounts of information and detailed results of analyses but lacks any supporting documentation, computer input / output to substantiate the analyses or their conclusions. Such documentation is normally provided as appendices to the main text of a transport assessment to allow those people making the decisions to be fully informed and more importantly to allow other parties and particularly concerned members of public / local residents to review what has been submitted.
2.1.2 It will be further shown in Section 2 that the predicted traffic from the development has been underestimated and the base traffic survey data has been gathered when volumes would have been reduced. The lack of any traffic flow diagrams makes it almost impossible to review or question where the development traffic would be distributed and in what quantity.
2.1.3 The choice of junctions to be assessed, whilst agreed with KMC Officers, excludes a key junction on the A653 where it intersects with A6029 Rein Road and Syke Road which is in the District of Leeds. It will be shown that this junction is currently operating at over capacity without the Chidswell site traffic being added.
2.1.4 The lack of scaled drawings of the proposed access junctions makes it impossible to determine whether the capacity models that WYG have created are practicable, achievable or safe. The lack of any computer input / output information for any of the capacity analyses does not allow for any third party review of the assumptions made.
2.1.5 Finally it will be shown that the report prepared by WYG has little or no regard to the safety of vulnerable road users and actually encourages the potentially dangerous operation of junctions in mitigation of the impact of the development traffic at locations which have some of the highest injury accident records in the West Yorkshire area.
2.1.6 Evidence on each of the above matters is provided below and will refer as necessary to the ITA submitted and its two appendices.

2.2 Interim Transport Assessment (ITA) Overview

2.2.1 The ITA prepared by WYG dated $22^{\text {nd }}$ August 2016 comprises several sections as below:

Executive Summary

1 Introduction
2 Existing Transport Situation
3 Indicative Masterplan Proposals
4 Trip generation, Assessment and Distribution
5 Highway Capacity Assessment
6 Summary and Conclusions
Appendices
A WYG Accessibility and Connectivity Review technical Note (21 December 2015)

B WYG Interim Transport Assessment Scoping Note (21 April 2016)
2.2.2 On first reading of the ITA one gets the impression that it provides a significant quantity of information in tabular, pictorial and text form. In normal circumstances this is supported by a comprehensive group of appendices which provides more detail, drawings, diagrams and substantiation of the information in the main body of the text of the report.
2.2.3 However, on closer examination it is evident that there are only two appendices provided and these are separate reports prepared by WYG. Neither of these two documents provides any further clarification of the above and elements of Appendix B (the Scoping Note) are superseded in the ITA but again with no detail provided (eg revised TRICS data output).
2.2.4 The information normally provided in the appendices to the main text of a transport assessment allows those people making the decisions to be fully informed and more importantly to allow them and other parties and particularly concerned members of public / local residents to properly review what has been submitted. It is appreciated from the ITA text that WYG has discussed matters with KMC Officers and their consultants and the "missing information" in the absent appendices may have been submitted separately but one then has to question why this information is not posted on the Council's website.
2.2.5 The ITA as submitted is therefore considered to inadequate and misleading / incorrect. The possible deliberate act of omission of full details of the traffic impact of the proposals is considered sufficient that Morley Town Council (MTC) would respectfully ask the Inspector to instruct the applicant to provide all relevant data / information for public perusal and comment before any further consideration of the proposals is made.
2.2.6 The individual sections of the ITA are now considered and commented on in the following paragraphs.

2.3 Executive Summary

2.3.1 This section merely summarises the document text after it and so any comments on the subsequent sections equally apply to this section but have not been repeated here for brevity.

2.41 - Introduction

2.4.1 This section describes the history / background of previous discussions and proposals on the site. Mention is also made of the two documents that are provided as appendices to the ITA.
2.4.2 Mention is made of discussions with KMC Highways Officers but with any from either Leeds City Council (LCC) or Wakefield Metropolitan District Council (WMDC). This is considered odd as the ITA considers the traffic impact of the proposals at key junctions with both of these Council areas (and omits some others). MTC would invite the Inspector to seek the views of these two Councils on the proposals.

2.5

2.5.1 This section of the ITA firstly describes the site location and the local highway network. It then describes the adjacent bus routes and the services that run along them and the train services which use Batley and Dewsbury rail stations. It goes on to describes facilities for walking and cycling and Accessibility Indicators to local services. Finally it describes the baseline traffic surveys carried out "to inform the traffic modelling aspects of" the ITA.
2.5.2 At paragraph 7.1.9 of Appendix A of the ITA it suggests that 800 m is a convenient walking distance to the core public transport network. The normally accepted distance to the nearest bus stops serving a route with at least 4 buses per hour (A653 Dewsbury Road) is given as 400m. This is measured from the centre of the development site or centre of "gravity" of the development. Looking at the masterplan a significant quantum of development is towards the eastern half of the site and certainly more than 400 m away from the stops on Dewsbury Road.
2.5.3 Therefore, for this site to be considered accessible by public transport then local services would need to be diverted through it which will require the internal road layout to be laid out / designed accordingly to encourage this. It is likely such a diversion would require to be funded for at least five years by the developer.
2.5.4 At paragraph 2.50 of the ITA mention is made of the traffic surveys required "to inform the traffic modelling aspects of" the ITA. It is noted that the scope of the surveys was agreed with KMC Highways Officers but no mention is made if the same agreement was made with the same officers from LCC or WMDC.
2.5.5 At paragraph 2.51 of the ITA it is stated the surveys were carried out on Thursday $5^{\text {th }}$ May 2016 at 10 "agreed" junctions on the highway network. MTC would like to bring to the attention of the Inspector two fundamental concerns with this matter.
2.5.6 Firstly is the date on which the baseline surveys were carried out - Thursday $5^{\text {th }}$ May 2016. It is industry standard practice to carry out such surveys outside school holidays / holiday periods to ensure that the data gathered is as representative of normal traffic conditions as possible.
2.5.7 Monday $2^{\text {nd }}$ May 2016 was a Bank Holiday and many people take that as an opportunity to have a longer break and go on holiday somewhere. This will have had some effect in reducing the peak hourly flows on the local network during the remainder of that week and particularly on the day of the survey.
2.5.8 The date of the surveys was also the date of the 2016 Local Council Elections in England and Wales. This applied to a third of the seats in Kirklees, Leeds, Bradford, Wakefield, Calderdale and Barnsley and all of the seats in Sheffield and Rotherham. On election days, many schools are closed to be used as polling stations and people change their travel patterns and journeys to or from work to go and vote.
2.5.9 Therefore it is the view of MTC that the date on which the baseline surveys at all 10 junctions were carried out would not be representative of normal daily traffic conditions as flows would be reduced or changed as a result of holidays and the local elections. Consequently all the junction capacity analyses within their ITA seriously underestimate the current traffic considitions and so in turn the potential impact of the traffic from the proposed allocation site at Chidswell.

Secondly, the surveys omit a key junction on the A653 corridor to the north of the site about half way between Junction 2 (M62 Junction 28) and Junction 3 (A653 Leeds Road / Heybeck Lane). This is the junction of the A653 Dewsbury Road with the A6029 Rein Road and Syke Road which is in the District of Leeds. If WYG did not contact LCC direct and only went through KMC Highways Engineers then it is probable that the latter would not be aware of this particular junction.

The A6029 Rein Road - Syke Road route is regularly used by commuters wishing to avoid the congested network at Junction 41 of the M1 and Junction 28 of the M62. One of the largest secondary schools in Leeds is also located a short distance from this junction along Rein Road. There are pedestrian crossing facilities provided on both of the A653 approaches which at peak times are called almost every cycle. The transport assessment prepared for a currently live application in West Ardsley in Leeds (ref 17 / 08262 / OT) has modelled this junction in the AM and PM peak hours and the analyses show that in 2017 this junction operates well over capacity in both peaks with negative Practical Reserve Capacities of -23.6% and -0.8% respectively. An extract from Appendix BGH7 from that Transport Assessment is attached as Appendix A to this report.

Therefore it is the opinion of MTC that the lack of any analysis of the impact of the traffic from the proposed allocation site at Chidswell at this key junction on the highway network is a serious omission by the applicant and their consultants.

$2.6 \quad 3$ - Indicative Masterplan Proposals

2.6.1 In this section of the ITA the proposed masterplan for the development proposals are described in words and in several figures. A separate larger scale drawing has also been submitted with the ITA.
2.6.2 However, whilst mention is made in this section of the potential for five separate access points to the site, no drawings are provided at any scale which show the exact details of these accesses in terms of location, junction layout and geometry. Such basic information is normally provided within an appendix to a transport assessment and whilst section 4 of the ITA refers to capacity analyses of these accesses, the absence of more detailed drawings (which must have been prepared to allow the analyses to be carried out) does not allow proper appraisal of the proposals by other parties.

2.7 4-Trip Generation, Assessment and Distribution

Trip Generation

2.7.1 In this section of the ITA it is explained how the industry standard TRICS trip rate database has been used to derive the trip rates and predicted trips for the mix of uses shown in the masterplan. WYG state they have used the TRICS database to extract the people / person trip rates for each use and used the 2011 Census to provide the likely modal split for residents on the site and residents of neighbouring areas who might work on the site.
2.7.2 Whilst this methodology is accepted practice one would have expected to see the TRICS data output used to derive the trip rates for each use and the raw Census data to determine the modal splits. None of this information is provided in the appendices to any of the reports mentioned in the ITA and only the ned results are given in the various tables in the ITA. Consequently it is not possible to verify whether WYG have used the TRICS database correctly or whether the appropriate modal splits have been applied.
2.7.3 Notwithstanding the lack of information provided, it is noted that the ITA indicates that KMC Officers consider the trip rates to be acceptable. This is surprising for the reasons given below and if correct then such rates should be allowed to be used elsewhere.
2.7.4 MTC would wish to advise the Inspector of a few concerns regarding the rates used in the ITA for the proposed uses.

Residential Trip Rates

2.7.5 Paragraphs 4.9 to 4.12 of the ITA describe the process used to derive the people trip rates for the residential uses. For private housing the two way people trip rates for the AM and PM peaks are given in Table 4.1 as 1.051 and 0.995 trips per dwelling respectively. When the modal split from the 2011 Census for the area around the site is applied to these rates (66% as given in Table 4.4) then two way vehicle rates of 0.694 and 0.657 trips per dwelling can be calculated.
2.7.6 These are both less than the normally accepted vehicle trip rates used by KMC Highways Officers for planning applications in their area of 0.8 trips per dwelling. For 1228 dwellings the difference in the respective peak periods between the ITA "approved rates" and the normal rates accepted by KMC results in an underestimation in the ITA of 131 and 176 vehicle trips.

B1a Office Use

2.7.7 Paragraph 4.13 of the ITA describes the process used to derive the people trip rates for the B1a office use (business park). It indicates that it found only four sites that WYG deemed appropriate which can be the problem when being so selective but in the absence of the actual output it is not possible to verify how appropriate these sites are.
2.7.8 For the business park use the two way people trip rates for the AM and PM peaks are given in Table 4.1 as 2.238 and 1.845 trips per 100sqm respectively. When the modal split from the 2011 Census for the area around the site is applied to these rates (70% as given in Table 4.4) then two way vehicle rates of 1.567 and 1.292 trips per 100sqm can be calculated.
2.7.9 These are both less than what can be determined from a more wider interrogation of the database as can be found in Appendix B to this report. This indicates potential two way vehicle rates of 1.793 and 1.423 trips per 100sqm in the respective peak hours. For $30,625 s q m$ of business park the difference in the respective peak periods between the ITA "approved rates" and the alternative rates derived from TRICS results in an underestimation of 69 and 40 vehicle trips.

B1c / B2 Industrial Uses

2.7.10 Paragraph 4.14 of the ITA describes the process used to derive the people trip rates for the industrial uses.
2.7.11 For the industrial estate use the two way people trip rates for the AM and PM peaks are given in Table 4.1 as 0.814 and 0.656 trips per 100sqm respectively. When the modal split from the 2011 Census for the area around the site is applied to these rates (70% as given in Table 4.4) then two way vehicle rates of 0.570 and 0.459 trips per 100sqm can be calculated.
2.7.12 These are both less than what can be determined from an interrogation of the database for edge of town sites as can be found in Appendix C to this report. This indicates potential two way vehicle rates of 0.756 and 0.610 trips per 100sqm in the respective peak hours. For 61,250 sqm of industrial estate the difference in the respective peak periods between the ITA "approved rates" and the alternative rates derived from TRICS results in an underestimation of 114 and 92 vehicle trips.

B8 Storage or Distribution

2.7.14 The two way people trip rates for the AM and PM peaks are given in Table 4.1 as 0.067 and 0.070 trips per 100sqm of development respectively. When the modal split from the 2011 Census for the area around the site is applied to these rates (70% as given in Table 4.5) then vehicle rates of 0.047 and 0.049 can be calculated. These rates appear to be very low compared to a quick survey of rates used in transport assessments locally with the lowest rates being in the region of 0.174 and 0.181 vehicle trips per 100 sqm respectively and the highest being 0.422 and 0.389 vehicle trips respectively.

Therefore given the rates used are significantly less than what is normally put forward one has to question the validity of the data used in the ITA for this use Indeed the rates are more akin to self storage type warehousing (typically 0.118 and 0.100 trips per 100sqm) than commercial storage. The TRICS database outputs for these uses can be found at Appendix D of this report.

For 30,628 sqm of $B 8$ uses the difference in the respective peak periods between the ITA "approved rates" and the more realistic rates given above results in an underestimation of 115 and 104 vehicle trips.
2.7.17 The table below summarises the above calculations. MTC has not reviewed the rates used for the affordable housing so the figures have been left the same as in the ITA but in the absence of the TRICS data reserve the right to comment further on their appropriateness.

Proposed Use	AM Peak	PM Peak
Residential	131	176
Affordable Residential	0	0
Business Park	69	40
Industrial Estate	114	92
Warehousing	115	104
Total Difference	429	413
ITA Total Flows	1873	1670
ITA + Difference	2302	2083

Table 1 - Difference in Traffic Generations
2.7.18 As can be seen from Table 1 if the trip rates used in the ITA are as inaccurate as is suggested above then the analyses carried out at the various existing and proposed junctions have used predicted flows some 19% less than perhaps should have been.

2011 Census Data

2.7.19 The ITA has used 2011 Census data to determine the modal split of residential traffic from the proposed development. It has used the same modal split as exists in the area surrounding to the site (Dewsbury East). However, whilst the location might be right, the ITA should have also considered the level of car ownership within that ward and compared that to an area with perhaps a greater amount of newer housing.
2.7.20 Dewsbury East is an area of typically higher density older housing often with limited off street parking. It is similar in this respect to the adjacent ward of Batley East but different to the adjacent ward in Leeds (Ardsley and Robin Hood) or even closer to the site, the Leeds Middle Output Area 108. The latter two areas have significant areas of newer housing than the first two.
2.7.21 If the 2011 Census is interrogated for each of these areas then the results as can be found in Appendix E are determined. These results show that in the similar residential areas of Dewsbury East and Batley East the proportion of households with no access to a private vehicle is about 30% whereas in Ardsley and Robin Hood or the Leeds Middle Output area 108 are 15.6% and 10.6% respectively.
2.7.22 Consequently if the modal splits for the same areas are examined (see Appendix E of this report) then these show a lower car use in Dewsbury East and Batley East (65.61% and 63.05% respectively when compared to the Leeds areas (75.74% and 80.50% respectively). These figures demonstrate that for areas of newer housing such as on the development site, a higher proportion of people will chose to use the private car for convenience as a greater proportion have access to a vehicle.
2.7.23 It is therefore concluded that the methodology used in the ITA to determine the residential vehicle trip rates from the people trip rates (and potentially the same applies to the employment uses) seriously underestimates the potential traffic generations form the development.
2.7.24 The ITA, at paragraph 4.42, suggests that their calculations "have identified what are considered to be suitable and robust person trip rates" and the vehicle trip rates "used in this assessment are considered suitable". The evidence provided above would hopefully lead the Inspector to conclude differently.

Trip Distribution

2.7.25 The ITA describes the process undergone to determine the likely distribution of traffic from the development site. Given the lack of data from the Census or any traffic flow diagrams, the ITA attempts to show the traffic distributions using different coloured areas on very small map and some percentages shown on another more local plan. Consequently it is not possible to verify the data or assumptions as to whether they are correct or reasonable.

$2.8 \quad 5$ - Highway Capacity Assessment

2.8.1 At paragraphs 2.5.4 to 2.5 .9 of this report it is demonstrated that the baseline junction surveys carried out in preparing the ITA are not representative of everyday conditions on the highway network. Section 2.7 of this report shows that the trip generation rates used in the ITA for the proposed uses appear to be lower than would be expected. These factors render all of the highway capacity assessments carried out in the ITA significantly flawed and they grossly underestimate the traffic impact of the proposals on the site on these junctions.
2.8.2 Notwithstanding the above statement there are further concerns which MTC would like to draw to the attention of the Inspector with regard to some of the analyses of the offsite and site access junctions which are outlined in the following paragraphs.

Offsite Junction Assessments

M1 Junction 40

2.8.3 This junction lies within WMDC jurisdiction but no mention is made in the ITA of that Authority's acceptance or otherwise of the analysis undertaken. The analyses show that the junction would operate significantly over capacity in both peak periods post development.
2.8.4 The mitigation offered is to model the junction away from the current methodology and optimise the signals. How this is achieved is unclear (due to the absence of the input data) but this might well be at the expense of increased queues on the motorway slip roads (something which Highways England would not be content with), linkages with adjacent signals and possibly safety.
2.8.5 The ITA uses the term "bonus green times" which have been applied at this and several other of the traffic signal controlled junctions analysed. As no analysis input / output raw data has been provided as an appendix to the ITA then it is not possible to verify the validity of the assumptions made or how the "bonus green time" has been applied. The inference in many of the junction analyses is that as some traffic was noted "generally running over the amber prior to the red at the end of their stage". MTC have been advised that such a suggestion is never put forward as being acceptable practice in transport assessments as it is condoning a potentially dangerous situation even if it does happen.

M62 Junction 28

2.8.6 This junction lies within LCC jurisdiction but no mention is made in the ITA of that Authority's acceptance or otherwise of the analysis undertaken. The analyses show that the junction would operate significantly over capacity in both peak periods post development.
2.8.7 Whilst committed development traffic is mentioned elsewhere in the ITA (and it is unclear what the actual analyses accommodated. What is not mentioned is the granting of planning permission for circa 300 dwellings on the A650 between Junction 28 of the M62 and Junction 41 of the M1 and the addition of that traffic on the former.
2.8.8 Again the mitigation offered is to model the junction away from the current methodology and optimise the signals. How this is achieved is unclear (due to the absence of the input data). Further mitigation in the form of increased use of "bonus green time" is also proposed. On the one hand to model the current operation of the junction with "bonus green time" as described in 2.8.5 above is one concern (given this probably occurs due to the congested nature of the network) to then almost offer this in mitigation of the impact of a proposed development is beyond belief.
2.8.9 Given the small amount of time between one approach changing from green to the opposing approach changing to green (otherwise known as the "intergreen") to offer an effective reduction in this safety factor as mitigation is creating a potentially unsafe situation. This junction has one of the worst injury accident records in the District of Leeds (ranked third) with signal violations being cited in 18 of the 30 collisions recorded. An extract from the Leeds Sites for Concern listing published in October 2017 is attached as Appendix F to this report.
2.8.10 The other so called "mitigation" measure is to suggest to reduce the green time given to pedestrians using the crossing over the northbound circulatory carriageway from 10 to 6 seconds as WYG deem the crossing to be little used. However they do not provide any evidence of this usage and in any case, it is understood from those people who use it, that this crossing is only called on demand when the button is pressed.
2.8.13 It should also be pointed out that the method of operation of this junction may have changed since the ITA was written as the right turn movements off the A653 are now signalled separately. Therefore the analyses are out of date and not representative of the current operation.

A653 / Chidswell Lane

2.8.14 In the absence of traffic flow diagrams and the input / output data for the analysis of this junction it is not possible to verify whether the results in the ITA are correct. This is a priority junction on to a high speed dual carriageway and any significant increase in turning movements is a cause for concern regardless of the results.

No mitigation of traffic impact at this junction is proposed.

A653 / B6128 Shaw Cross Junction

This is a busy signal controlled cross roads junction with a significant road safety problem (11 collisions in five years). The analyses show that post development it would be significantly over capacity.

No mitigation of traffic impact at this junction is proposed. Use has been made of "bonus green times" once again at an accident blackspot (previous comments refer).

B6128 Owl Lane / Windsor Road

The analyses in the ITA admit that this junction will be over capacity in the future design years with or without the proposed development but does not offer any improvements in mitigation of the latter.

A638 / B6128 Roundabout

This junction lies within WMDC jurisdiction but no mention is made in the ITA of that Authority's acceptance or otherwise of the analysis undertaken. The analyses show that the junction would operate significantly over capacity in both peak periods without or with the development. No improvements are offered in mitigation of the latter.

This junctions lies within the control of WMDC and no mention is made in the ITA of that Council's views of the impact of the development at this junction.

A653 / A6029 Rein Road and Syke Road

As mentioned at 2.5.10 above the ITA failed to analyse a key junction on the A653 corridor to the north of the site about half way between Junction 2 (M62 Junction 28) and Junction 3 (A653 Leeds Road / Heybeck Lane). This is the junction of the A653 Dewsbury Road with the A6029 Rein Road and Syke Road which is in the District of Leeds.

The A6029 Rein Road - Syke Road route is regularly used by commuters wishing to avoid the congested network at Junction 41 of the M1 and Junction 28 of the M62. One of the largest secondary schools in Leeds is also located a short distance from this junction along Rein Road. There are pedestrian crossing facilities provided on both of the A653 approaches which at peak times are called almost every cycle.

The transport assessment prepared for a currently live application in West Ardsley in Leeds (ref 17 / 08262 / OT) has modelled this junction in the AM and PM peak hours and the analyses show that in 2017 this junction operates well over capacity in both peaks with negative Practical Reserve Capacities of -23.6\% and -0.8% respectively. An extract from Appendix BGH7 from that Transport Assessment is attached as Appendix A to this report.

In addition it should be noted that this junction also has a severe injury accident record with 12 incidents occurring between $1^{\text {st }}$ January 2012 and $30^{\text {th }}$ June 2017 resulting in 8 slight and 4 serious injuries (see screen print of Crashmap website in Appendix F). Therefore it is the opinion of MTC that the lack of any analysis of the impact of the traffic from the proposed allocation site at Chidswell at this key junction on the highway network is a serious omission by the applicant and their consultants. The views of LCC on this omission should be sought.

Site Access Junction Assessments

A653 North Access
2.8.27 This junction is proposed to be traffic signal controlled which by 2030 will have little spare capacity in the AM peak according to the ITA (only 1.8% in table 5.22 contrary to what is stated at paragraph 5.137). If the baseline traffic data and the predicted traffic levels have been underestimated then this junction is more likely to be operating over capacity in the future design year.
2.8.28 In the absence of any detailed plans it is not possible to determine how this junction will be laid out and if the right turn movement in to the site access will be separately signalled (which may warrant carriageway widening affecting third party land) which is good safety practice in the design of traffic signal controlled junctions on high speed roads. Similarly the lack of any input data for the capacity analysis means that it is not possible to see how WYG have catered for anticipated pedestrian movements across the A653 to access bus stops.

It is noted from the masterplan that this junction will be approximately 300 m south of the Heybeck Lane junction. As noted at 2.8.11 above, the analyses have incorrectly modelled the operation of this junction and the supposed "mitigation" is achieved by compromising safety. If the northbound A653 queue lengths in table 5.13 in the ITA are therefore more likely (61+ vehicles), then these would extend across the new access junction and so compromise its operation.

Finally this junction is located at an existing gap in the central reservation. Being on a dual carriageway such gaps are used by local residents to access to and from their properties. If the gap is removed (or such movements prohibited) then these movements will be displaced to another perhaps less safe location. No information or mention of this is given in the ITA.

A653 South Access

This junction is proposed to be traffic signal controlled which by 2030 will have ample reserve capacity according to the ITA. If the baseline traffic data and the predicted traffic levels have been underestimated then the operation of this junction is more likely closer to being over capacity in the future design year.

In the absence of any detailed plans it is not possible to determine how this junction will be laid out and if the right turn movement in to the site access will be separately signalled (which may warrant carriageway widening affecting third party land) which is good safety practice in the design of traffic signal controlled junctions on high speed roads. Similarly the lack of any input data for the capacity analysis means that it is not possible to see how WYG have catered for anticipated pedestrian movements across the A 653 to access bus stops.
2.8.33 It is evident that two issues might not have been considered in the ITA. The first is whether the forward visibility requirements on the northbound approach on the A653 can be achieved in accordance with TD9 of the Design Manual for Roads and Bridges (the junction position is in a dip).
2.8.34 The second is that there is a significant level difference between the two carriageways hence why they are separated by a planter in the central reservation. Vehicles turning right either in to or out of the new access would have to cross the central reservation and so would encounter this level difference. No information is provided by WYG as to how this problem is to be remedied by either raising or lowering one or other of the carriageways with the consequent effect of private driveways etc.
2.8.35 It is therefore questionable if a new access can be formed in this location.

Chidswell Lane Priority Junction

2.8.36 This is proposed to be a priority junction but no information is provided as to what pedestrian crossing facilities will be provided particularly as the ITA indicates there might be two approach lanes on the access road plus the exit lane.

B6128 Owl Lane / Site Access Roundabout

2.8.37 A new roundabout is proposed at this junction however in the absence of any drawings it is not possible to determine how this junction will be laid out particularly for pedestrians.
2.8.38 The analyses in the ITA claim that this junction would be expected to operate within capacity in 2030 but it is noted that in the AM peak, the Owl Lane approaches would be nearing capacity. If the baseline traffic data and the predicted traffic levels have been underestimated then the operation of this junction is more likely closer to being over capacity in the future design year. In such a situation queue lengths would increase and impact on the safe operation of adjacent junctions / accesses.

$2.9 \quad$ Other Documents

2.9.1 MTC has obtained further documents through the Freedom of Information Act. This includes
a) Technical Paper and Addendum: Transport Model prepared by KMC dated April 2017
b) An assessment of Kirklees Local Plan Sites prepared for Highways England looking at the impact of these
c) Kirklees Local Plan Submission Document SD4.
2.9.2 An examination of the above documents indicates the following. Document a) indicates that funding for major highway improvements along the A653 is not currently available and the project has not been costed and there is no estimated completion date (according to the West Yorkshire Combined Authority web site https://www.westyorks-ca.gov.uk/transport/west-yorkshire-plus-transport-fund/a653/-).
2.9.3 Document b) identifies significant capacity problems at both Junction 40 of the M1 and Junction 28 of the M62 and with further developments in Kirklees these problems would be exacerbated.
2.9.4 Document c) puts forwards amendments to the allocation of this site at Chidswell such that:
"Additional mitigation on the wider highway networkill be required. Development of this site has the potential for a significant impact on the Strategic Road Network. Measures will be required to reduce and mitigate that impact. The transport assessment will need to demonstrate that any committed schemes are sufficient to deal with the additional demand generated by the site. Where committed schemes will not provide sufficient capacity or where Highways England does not have committed investment, development may need to contribute to additional schemes identified by Highways England and included in the Infrastructure Delivery Plan (IDP) or other appropriate schemes. If development is dependent upon construction of a committed scheme, then development will need to be phased to take place following scheme opening."
2.9.5 This amendment does indicate that that the content of the ITA prepared by WYG has not been accepted on face value by KMC. Whilst this does offer some comfort to MTC the concerns remain that the document prepared by WYG was published in the manner and form it has with the inference that many of its basic matters have been accepted by KMC Officers when they are clearly misleading or incorrect. MTC remains sceptical that future transport assessments will endeavour to build on this and so result in planning approvals on the site which fail to mitigate their impact on the highway network in Kirklles, Leeds and Wakefield.

3 SUMMARY AND CONCLUSIONS

3.1 Summary

3.1.1 This report has been prepared on behalf of Morley Town Council (MTC) to advise them and the Inspector on the highways and traffic issues related to the proposed allocation of land for a mixed use development at Chidswell to the north of Dewsbury in West Yorkshire.
3.1.2 Section 2 of this report describes and then considers the contents of the Interim Transport Assessment (ITA) prepared by White Young Green (WYG). It has been demonstrated that:
a) The ITA provides copious amounts of information and detailed results of analyses but lacks any supporting documentation.
b) The ITA report underestimates the predicted traffic generated by the development by about 19% and uses flawed base traffic survey data carried out in a holiday week on local election day.
c) A key junction on the A653 Dewsbury Road is omitted from the analyses and those that are undertaken lack supporting drawings, flow diagrams or computer input / output data.
d) Several proposed access junctions are either impracticable or create potential safety problems.
e) No real mitigation of the impact of the development on the highway network is offered and some of the proposals are not normally ever put forward as they would create significant road safety hazards to all road users particularly pedestrians and cyclists.

$3.2 \quad$ Conclusions

3.2.1 It is concluded that the ITA as submitted is therefore inadequate and misleading / incorrect. The possible deliberate act of omission of full details of the traffic impact of the proposals is considered sufficient that Morley Town Council would respectfully ask the Inspector to instruct the applicant to provide all relevant data / information for public perusal and comment before any further consideration of the proposals is made.

APPENDICES

APPENDIX A
 LCC Application 17 / 08262 / OT - Appendix
 BGH7 of Transport Assessment

Full Input Data And Results
Lane Saturation Flows

Junction: Dewsbury Road - Syke Road - Rein Road								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
$1 / 1$(Dewsbury Road East (Entry))	3.10	0.00	Y	Arm 4 Ahead	Inf	78.9 \%	1882	1882
				Arm 6 Left	14.00	21.1 \%		
$1 / 2$(Dewsbury Road East (Entry))	3.10	0.00	Y	Arm 4 Ahead	Inf	87.5 \%	1900	1900
				Arm 8 Right	14.00	12.5 \%		
$2 / 1$ (Dewsbury Road East (Exit))	3.00	0.00	Y				1915	1915
$2 / 2$ (Dewsbury Road East (Exit))	3.00	0.00	Y				1915	1915
$\begin{gathered} 3 / 1 \\ \text { (Dewsbury Road West (Entry)) } \end{gathered}$	3.00	0.00	Y	Arm 2 Ahead	Inf	60.2 \%	1879	1879
				Arm 8 Left	31.00	39.8 \%		
$3 / 2$ (Dewsbury Road West (Entry))	3.00	0.00	Y	Arm 2 Ahead Arm 6 Right	$\begin{gathered} \text { Inf } \\ 13.00 \end{gathered}$	93.8 \% 6.2 \%	1901	1901
$4 / 1$ (Dewsbury Road West (Exit) Lane 1)	Infinite Saturation Flow						Inf	Inf
(Dewsbury Road West (Exit) Lane 2)	Infinite Saturation Flow						Inf	Inf
$\begin{gathered} 5 / 1 \\ \text { (Syke Road (Entry)) } \end{gathered}$	4.10	0.00	Y	Arm 2 Right	28.00	15.4 \%	1963	1963
				Arm 4 Left	14.00	21.6 \%		
				Arm 8 Ahead	Inf	63.0 \%		
$\begin{gathered} \text { 6/1 } \\ \text { (Syke Road (Exit)) } \end{gathered}$	3.80	0.00	Y				1995	1995
				Arm 2 Left	9.00	19.7 \%		
7/1	3.50	0.00	Y	Arm 4 Right	28.00	42.8 \%	1861	1861
				Arm 6 Ahead	Inf	37.6 \%		
$\begin{gathered} 8 / 1 \\ \text { (Rein Road (Exit)) } \end{gathered}$	3.50	0.00	Y				1965	1965

Scenario 1: '2017 Existing AM' (FG1: '2017 Existing AM', Plan 1: 'Network Control Plan 1') Stage Sequence Diagram

Full Input Data And Results
Stage Timings

Stage	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Duration	33	24	7
Change Point	0	42	74

Signal Timings Diagram

Full Input Data And Results

Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network	-	-	N/A	-	-		-	-	-	-	-	-	111.3\%
Dewsbury Road - Syke Road Rein Road	-	-	N/A	-	-		-	-	-	-	-	-	111.3\%
1/1	Dewsbury Road East (Entry) Ahead Left	U	N/A	N/A	A		1	33	-	377	1895	716	52.7\%
1/2	Dewsbury Road East (Entry) Ahead Right	O	N/A	N/A	A		1	33	-	378	1878	340	111.3\%
2/1	Dewsbury Road East (Exit)	U	N/A	N/A	-		-	-	-	530	1915	1915	27.7\%
2/2	Dewsbury Road East (Exit)	U	N/A	N/A	-		-	-	-	783	1915	1915	40.9\%
3/1	Dewsbury Road West (Entry) Ahead Left	U	N/A	N/A	B		1	33	-	697	1880	710	98.1\%
3/2	Dewsbury Road West (Entry) Ahead Right	O	N/A	N/A	B		1	33	-	697	1911	722	96.5\%
5/1	Syke Road (Entry) Right Left Ahead	O	N/A	N/A	C		1	27	-	366	1964	611	59.9\%
6/1	Syke Road (Exit)	U	N/A	N/A	-		-	-	-	230	1995	1995	11.5\%
7/1	Rein Road (Entry) Left Right Ahead	O	N/A	N/A	D		1	27	-	400	1862	435	92.1\%
8/1	Rein Road (Exit)	U	N/A	N/A	-		-	-	-	558	1965	1965	27.9\%

Full Input Data And Results

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network	-	-	280	0	86	21.0	48.5	1.4	71.0	-	-	-	-
Dewsbury Road - Syke Road Rein Road	-	-	280	0	86	21.0	48.5	1.4	71.0	-	-	-	-
1/1	377	377	-	-	-	2.3	0.6	-	2.8	27.0	7.2	0.6	7.8
1/2	378	378	0	0	80	2.3	23.2	0.9	26.4	251.3	7.3	23.2	30.5
2/1	530	530	-	-	-	0.0	0.2	-	0.2	1.3	0.0	0.2	0.2
2/2	783	783	-	-	-	0.0	0.3	-	0.3	1.6	0.0	0.3	0.3
3/1	697	697	-	-	-	5.4	10.3	-	15.7	80.9	17.0	10.3	27.3
3/2	697	697	13	0	0	5.3	8.4	0.0	13.7	70.7	17.0	8.4	25.4
$5 / 1$	366	366	114	0	3	2.7	0.7	0.1	3.5	34.6	7.7	0.7	8.5
6/1	230	230	-	-	-	0.0	0.1	-	0.1	1.0	0.0	0.1	0.1
$7 / 1$	400	400	153	0	3	3.1	4.6	0.4	8.1	72.7	9.7	4.6	14.2
8/1	549	549	-	-	-	0.0	0.2	-	0.2	1.3	0.0	0.2	0.2
C1			PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):		$\begin{aligned} & -23.6 \\ & -23.6 \end{aligned}$	Total Delay for Signalled Lanes $(\mathrm{pcuHr}):$ 70.16 Total Delay Over All Lanes $(\mathrm{pcuHr}):$ 70.96			Cycle Time (s): 90				

Full Input Data And Results
Scenario 2: '2017 Existing PM' (FG2: '2017 Existing PM', Plan 1: 'Network Control Plan 1')
Stage Sequence Diagram

Stage Timings

Stage	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Duration	34	23	7
Change Point	0	43	74

Signal Timings Diagram

Full Input Data And Results

Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network	-	-	N/A	-	-		-	-	-	-	-	-	90.8\%
Dewsbury Road - Syke Road Rein Road	-	-	N/A	-	-		-	-	-	-	-	-	90.8\%
1/1	Dewsbury Road East (Entry) Ahead Left	U	N/A	N/A	A		1	34	-	626	1882	732	85.5\%
1/2	Dewsbury Road East (Entry) Ahead Right	0	N/A	N/A	A		1	34	-	625	1900	700	89.2\%
2/1	Dewsbury Road East (Exit)	U	N/A	N/A	-		-	-	-	361	1915	1915	18.9\%
2/2	Dewsbury Road East (Exit)	U	N/A	N/A	-		-	-	-	527	1915	1915	27.5\%
3/1	Dewsbury Road West (Entry) Ahead Left	U	N/A	N/A	B		1	34	-	498	1879	731	68.2\%
3/2	Dewsbury Road West (Entry) Ahead Right	0	N/A	N/A	B		1	34	-	497	1901	726	68.4\%
5/1	Syke Road (Entry) Right Left Ahead	0	N/A	N/A	C		1	26	-	208	1963	589	35.3\%
6/1	Syke Road (Exit)	U	N/A	N/A	-		-	-	-	335	1995	1995	16.8\%
7/1	Rein Road (Entry) Left Right Ahead	0	N/A	N/A	D		1	26	-	458	1861	505	90.8\%
8/1	Rein Road (Exit)	U	N/A	N/A	-		-	-	-	407	1965	1965	20.7\%

Full Input Data And Results

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network	-	-	285	0	52	20.3	13.7	0.6	34.6	-	-	-	-
Dewsbury Road - Syke Road Rein Road	-	-	285	0	52	20.3	13.7	0.6	34.6	-	-	-	-
1/1	626	626	-	-	-	4.4	2.8	-	7.2	41.3	14.3	2.8	17.1
1/2	625	625	52	0	26	4.3	3.8	0.3	8.4	48.5	14.1	3.8	17.8
2/1	361	361	-	-	-	0.0	0.1	-	0.1	1.2	0.0	0.1	0.1
2/2	527	527	-	-	-	0.0	0.2	-	0.2	1.3	0.0	0.2	0.2
3/1	498	498	-	-	-	3.2	1.1	-	4.2	30.5	10.2	1.1	11.3
3/2	497	497	11	0	20	3.1	1.1	0.2	4.4	31.8	10.2	1.1	11.3
5/1	208	208	31	0	1	1.4	0.3	0.0	1.7	29.5	4.0	0.3	4.3
6/1	335	335	-	-	-	0.0	0.1	-	0.1	1.1	0.0	0.1	0.1
7/1	458	458	192	0	4	3.8	4.2	0.2	8.2	64.2	11.1	4.2	15.2
8/1	407	407	-	-	-	0.0	0.1	-	0.1	1.2	0.0	0.1	0.1
C1			PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):		$\begin{aligned} & \hline-0.8 \\ & -0.8 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr): 34.09 Total Delay Over All Lanes(pcuHr): 34.62			Cycle Time (s): 90				

APPENDIX B
 TRICS Output - Business Park

TRIP RATE CALCULATION SELECTI ON PARAMETERS:

Land Use Category VEHI CLES		: 02 - EMPLOYMENT	
		B - BUSINESS PARK	
Selected regions and areas:			
02	SOUTH EAST		
	BU	BUCKINGHAMSHIRE	1 days
	HC	HAMPSHIRE	1 days
	HF	HERTFORDSHIRE	1 days
	OX	OXFORDSHIRE	1 days
03	SOUTH WEST		
	DC	DORSET	1 days
	WL	WILTSHIRE	1 days
04	EAST ANGLIA		
	NF	NORFOLK	1 days
	SF	SUFFOLK	1 days
05	EAST MIDLANDS		
	LN	LINCOLNSHIRE	1 days
	NT	NOTTINGHAMSHIRE	1 days
06	WEST MIDLANDS		
	SH	SHROPSHIRE	3 days
	WM	WEST MIDLANDS	1 days
	W0	WORCESTERSHIRE	1 days
07	YORKSHIRE \& NORTH LINCOLNSHI RE		
	NO	NORTH LINCOLNSHIRE	1 days
08	NORTH WEST		
	GM	GREATER MANCHESTER	1 days
09	NORTH		
	TW	TYNE \& WEAR	4 days
10	WA		
	CF	CARDIFF	2 days

Parameter: Gross floor area
Range: 975 to 121275 (units: sqm)
Public Transport Provision:
Selection by:
Include all surveys
Date Range: 01/01/02 to 22/06/09
Selected survey days:
Monday 3 days
Tuesday 6 days
Wednesday 2 days
Thursday 8 days
Friday 4 days
Selected survey types:
Manual count 23 days
Directional ATC Count 0 days
Selected Locations:
Town Centre 1
Edge of Town Centre 1
Suburban Area (PPS6 Out of Centre) 6
Edge of Town 15
Selected Location Sub Categories:
Industrial Zone 8
Commercial Zone 5
Residential Zone 2
Retail Zone 1
Built-Up Zone 2
No Sub Category 5

1	BU-02-B-01 LONDON ROAD	BUSI NESS PARK, HIGH WYCOMBE	BUCKI NGHAMSHI RE
	HIGH WYCOMBE		
	Edge of Town		
	No Sub Category		
	Total Gross floor area:	13300 sqm	
2	FORTRAN ROADST MELLONS		CARDIFF
	CARDIFF		
	Edge of Town		
	Industrial Zone		
	Total Gross floor area:	: 12000 sqm	
3	CF-02-B-02 BUSI NESS/ TECH. UNITS, CARDI FF		CARDIFF
	ST MELLONS		
	CARDIFF		
	Suburban Area (PPS6 Out of Centre)		
	No Sub Category		
	Total Gross floor area:	: 2587 sqm	
4	DC-02-B-01	BUSI NESS PARK, POOLE	DORSET
	COMMERCIAL ROAD		

POOLE
Suburban Area (PPS6 Out of Centre)
Built-Up Zone
Total Gross floor area: 1570 sqm
5 GM-02-B-03 BUSINESS PARK, SALE
CROSS STREET
SALE
Edge of Town
Industrial Zone
Total Gross floor area: 3985 sqm
6 HC-02-B-01 BUSI NESS PARK, BASI NGSTOKE HAMPSHIRE
CROCKFORD LANE
CHINEHAM BUSINESS PARK
BASINGSTOKE
Edge of Town
Commercial Zone
Total Gross floor area: 121275 sqm
7 HF-O2-B-01 BUSINESS PARK, HATFIELD
HERTFORDSHIRE
ST ALBANS ROAD WEST

HATFIELD

Edge of Town
Commercial Zone
Total Gross floor area: 26000 sqm
8 LN-O2-B-01 BUSI NESS PARK, LINCOLN
BISHOPS ROAD
LINCOLN
Edge of Town
Industrial Zone
Total Gross floor area:
4460 sqm
9 NF-02-B-02 BUSI NESS PARK, NORWI CH
WHITING ROAD
LONG JOHN'S HILL
NORWICH
Edge of Town
Retail Zone
Total Gross floor area: 7400 sqm

LINCOLNSHIRE

NORFOLK

10 NO-02-B-02 BUSI NESS PARK, SCUNTHORPE NORTH LI NCOLNSHI RE
DONCASTER ROAD
SCUNTHORPE
Edge of Town
Residential Zone
Total Gross floor area: 1574 sqm
11 NT-02-B-01 BUSI NESS PARK, NOTTI NGHAM NOTTI NGHAMSHI RE
PARK LANE
NOTTINGHAM
Suburban Area (PPS6 Out of Centre)
No Sub Category
Total Gross floor area: 2321 sqm
12 OX-02-B-01 BUSI NESS PARK, OXFORD OXFORDSHIREGARSINGTON ROAD
COWLEY
OXFORD
Edge of Town
Commercial Zone
Total Gross floor area: 33105 sqm
13 SF-02-B-01 BUSI NESS PK, BURY ST EDMUNDS SUFFOLKKEMPSON WAY
BURY ST EDMUNDS
Edge of Town
Industrial Zone
Total Gross floor area: 2480 sqm
14 SH-02-B-01 BUSI NESS PARK, SHREWSBURY
WELSHPOOL ROAD
SHREWSBURY
Edge of Town
Commercial Zone
Total Gross floor area: 17197 sqm
15 SH-02-B-02 BUSI NESS PARK, TELFORD
STAFFORD COURT
TELFORD
Edge of Town Centre
Commercial Zone
Total Gross floor area: 9500 sqm
16 SH-02-B-03 BUSI NESS CENTRE, TELFORD
CASTLE STREET
HADLEY
TELFORD
Suburban Area (PPS6 Out of Centre)
No Sub Category
Total Gross floor area: 1300 sqm
17 TW-02-B-01 BUSI NESS PARK, NEWCASTLE
TYNE \& WEAR
ST THOMAS STREET
NEWCASTLE
Town Centre
Built-Up Zone
Total Gross floor area: 975 sqm
18 TW-02-B-02 BUSI NESS PARK,NORTH SHI ELDS TYNE \& WEAR
HIGH FLATWORTH
NORTH SHIELDS
Suburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: 27142 sqm
SHROPSHI RE
SHROPSHI RE SHI RESHROPSHI RE

19	TW-02-B-03 BUSI NESS PARK, SUNDERLAND	TYNE \& WEAR
	CITY WAY	
	EAST HERRINGTON	
	SUNDERLAND	
	Edge of Town	
	No Sub Category	
	Total Gross floor area: 77513 sqm	
20	TW-02-B-04 BUSI NESS PARK, NEWCASTLE KINGFISHER BOULEVARD	TYNE \& WEAR
	LEMINGTON	
	NEWCASTLE UPON TYNE	
	Edge of Town	
	Industrial Zone	
	Total Gross floor area: 38853 sqm	
21	WL-02-B-01 BUSI NESS PK,WOOTTON BASSETT	WI LTSHI RE
	HIGH STREET	
	COPED HALL	
	WOOTTON BASSETT	
	Edge of Town	
	Residential Zone	
	Total Gross floor area: 2600 sqm	
22	WM-02-B-01 BUSI NESS PARK, COVENTRY	WEST MI DLANDS
	FOLESHILL	
	COVENTRY	
	Suburban Area (PPS6 Out of Centre)	
	Industrial Zone	
	Total Gross floor area: 30042 sqm	
23	WO-02-B-01 BUSI NESS PARK, REDDI TCH	WORCESTERSHI RE
	BURNT MEADOW ROAD	
	MOORS MOAT NTH IND. EST	
	REDDITCH	
	Edge of Town	
	Industrial Zone	
	Total Gross floor area: 3525 sqm	

TRIP RATE for Land Use 02 - EMPLOYMENT/B - BUSINESS PARK
VEHI CLES
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

975-121275 (units: sqm)
01/01/02-22/06/09
23
0
0
0

APPENDIX C

TRICS Output - Industrial Estate

TRI P RATE CALCULATI ON SELECTI ON PARAMETERS:

```
Land Use : 02-EMPLOYMENT
Category : D-INDUSTRIAL ESTATE
VEHI CLES
```

Selected regions and areas:

$\mathbf{0 4}$	EAST ANGLIA	
	CA CAMBRIDGESHIRE	1 days
	NF NORFOLK	1 days
$\mathbf{0 6}$	WEST MI DLANDS	
	WO WORCESTERSHIRE	
$\mathbf{0 8}$	NORTH WEST	
	LC LANCASHIRE	1 days
	MS MERSEYSIDE	1 days
$\mathbf{0 9}$	NORTH	
	TW TYNE \& WEAR	1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

Filtering Stage 2 selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area
Actual Range:	2063 to 6800 (units: sqm)
Range Selected by User:	1197 to 8000 (units: sqm)

Public Transport Provision:
Selection by: Include all surveys
Date Range: $\quad 01 / 01 / 02$ to $23 / 05 / 14$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday	2 days
Tuesday	1 days
Friday	3 days

This data displays the number of selected surveys by day of the week.

Selected survey types:

Manual count	6 days
Directional ATC Count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Edge of Town

6

This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:

Industrial Zone 2

Commercial Zone 1
Residential Zone 2
No Sub Category 1
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Use Class:

B1	1 days
B2	3 days
B8	1 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 1 mile:

1,000 or Less	1 days
5,001 to 10,000	2 days
15,001 to 20,000	1 days
20,001 to 25,000	1 days
25,001 to 50,000	1 days

This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:

5,001 to 25,000	1 days
75,001 to 100,000	1 days
125,001 to 250,000	2 days
250,001 to 500,000	2 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	1 days
1.1 to 1.5	5 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:
No 6 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

1 CA-02-D-02
COLDHAM'S ROAD
COLDHAM'S COMMON
CAMBRIDGE
Edge of Town
Industrial Zone
Total Gross floor area: 2063 sqm
$\begin{array}{lll}\text { Survey date: MONDAY } & \text { 19/10/09 Survey Type: MANUAL }\end{array}$
2 LC-02-D-04 INDUSTRIAL ESTATE LANCASHIRE
GREEN LANE WEST
GARSTANG
Edge of Town
Industrial Zone
Total Gross floor area: 4555 sqm
Survey date: FRIDAY 16/06/06
3 MS-02-D-05 INDUSTRI AL ESTATE
BROADOAK ROAD
ST HELENS
Edge of Town
No Sub Category
Total Gross floor area: 2430 sqm
Survey date: TUESDAY 18/10/05
4 NF-02-D-03 INDUSTRIAL ESTATE
BIDEWELL CLOSE
NORWICH
Edge of Town
Residential Zone
Total Gross floor area: 6000 sqm
Survey date: MONDAY 08/10/12
5 TW-02-D-07 INDUSTRI AL ESTATE
SWALWELL BANK
WHICKHAM
GATESHEAD
Edge of Town
Residential Zone
Total Gross floor area: 6800 sqm
Survey date: FRIDAY 04/10/13
6 WO-02-D-01 INDUSTRI AL ESTATE
SANDY LANE
STOURPORT-ON-SEVERN
Edge of Town
Commercial Zone
Total Gross floor area: 2758 sqm
Survey date: FRIDAY 23/05/14

CAMBRI DGESHI RE

Survey Type: MANUAL MERSEYSIDE

Survey Type: MANUAL

NORFOLK

Survey Type: MANUAL

TYNE \& WEAR

Survey Type: MANUAL WORCESTERSHIRE

Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE
VEHICLES
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30									
05:30-06:00									
06:00-06:30									
06:30-07:00									
07:00-07:30	6	4101	0.154	6	4101	0.077	6	4101	0.231
07:30-08:00	6	4101	0.309	6	4101	0.061	6	4101	0.370
08:00-08:30	6	4101	0.211	6	4101	0.224	6	4101	0.435
08:30-09:00	6	4101	0.175	6	4101	0.146	6	4101	0.321
09:00-09:30	6	4101	0.272	6	4101	0.154	6	4101	0.426
09:30-10:00	6	4101	0.215	6	4101	0.207	6	4101	0.422
10:00-10:30	6	4101	0.195	6	4101	0.215	6	4101	0.410
10:30-11:00	6	4101	0.199	6	4101	0.167	6	4101	0.366
11:00-11:30	6	4101	0.248	6	4101	0.224	6	4101	0.472
11:30-12:00	6	4101	0.240	6	4101	0.280	6	4101	0.520
12:00-12:30	6	4101	0.276	6	4101	0.280	6	4101	0.556
12:30-13:00	6	4101	0.232	6	4101	0.260	6	4101	0.492
13:00-13:30	6	4101	0.215	6	4101	0.211	6	4101	0.426
13:30-14:00	6	4101	0.183	6	4101	0.224	6	4101	0.407
14:00-14:30	6	4101	0.280	6	4101	0.240	6	4101	0.520
14:30-15:00	6	4101	0.224	6	4101	0.203	6	4101	0.427
15:00-15:30	6	4101	0.268	6	4101	0.276	6	4101	0.544
15:30-16:00	6	4101	0.171	6	4101	0.207	6	4101	0.378
16:00-16:30	6	4101	0.167	6	4101	0.248	6	4101	0.415
16:30-17:00	6	4101	0.142	6	4101	0.248	6	4101	0.390
17:00-17:30	6	4101	0.073	6	4101	0.350	6	4101	0.423
17:30-18:00	6	4101	0.069	6	4101	0.118	6	4101	0.187
18:00-18:30	6	4101	0.057	6	4101	0.118	6	4101	0.175
18:30-19:00	6	4101	0.037	6	4101	0.041	6	4101	0.078
19:00-19:30									
19:30-20:00									
20:00-20:30									
20:30-21:00									
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			4.612			4.779			9.391

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

2063-6800 (units: sqm)
01/01/02-23/05/14
6
0
0

This section displays a quick summary of some of the data filtering selections made by the TRICS ${ }^{\circledR}$ user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

APPENDIX D
 TRICS Output - Warehousing Commercial and Self Storage

TRI P RATE CALCULATI ON SELECTI ON PARAMETERS:

```
Land Use : 02-EMPLOYMENT
Category : F - WAREHOUSING (COMMERCIAL)
VEHI CLES
```

Selected regions and areas:
01 GREATER LONDON

EN	ENFIELD	1 days
HO	HOUNSLOW	1 days
KI	KINGSTON	1 days

02 SOUTH EAST
BD BEDFORDSHIRE 1 days
HC HAMPSHIRE 1 days
KC KENT 1 days
SC SURREY 1 days
03 SOUTH WEST
CW CORNWALL 1 days
DC DORSET 1 days
04 EAST ANGLIA
SF SUFFOLK
06 WEST MI DLANDS
WM WEST MIDLANDS 1 days
WO WORCESTERSHIRE 1 days
10 WALES
BG BRIDGEND 1 days
NW NEWPORT 1 days
WR WREXHAM 1 days
11 SCOTLAND
GC GLASGOW CITY 1 days
This section displays the number of survey days per TRICS® sub-region in the selected set

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area
Actual Range:	3050 to 16275 (units: sqm)
Range Selected by User:	2000 to 18000 (units: sqm)

Public Transport Provision:
Selection by: Include all surveys

Date Range: $\quad 01 / 01 / 00$ to $13 / 10 / 14$

This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday	2 days
Tuesday	5 days
Wednesday	3 days
Thursday	3 days
Friday	3 days

This data displays the number of selected surveys by day of the week.
Selected survey types:

Manual count	16 days
Directional ATC Count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Town Centre 1
Edge of Town Centre 1
Suburban Area (PPS6 Out of Centre) 3
Edge of Town 9
Neighbourhood Centre (PPS6 Local Centre) 1
Free Standing (PPS6 Out of Town) 1
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:

Industrial Zone
 9

Residential Zone 2
Village 1
No Sub Category 4
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Filtering Stage $\mathbf{3}$ selection:

```
Use Class:
Not Known 2 days
    B8 }14\mathrm{ days
```

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS®.

Filtering Stage 3 selection (Cont.):

Population within 1 mile:	
1,000 or Less	
1,001 to 5,000	
10,001 days 15,000	
20,001 days 25,000	
25,001 do 50,000	
50,001 doys 100,000	

This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:

5,001 to 25,000	1 days
25,001 to 50,000	1 days
50,001 to 75,000	2 days
75,001 to 100,000	1 days
100,001 to 125,000	3 days
125,001 to 250,000	2 days
250,001 to 500,000	2 days
500,001 or More	4 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.5 or Less	1 days
0.6 to 1.0	4 days
1.1 to 1.5	10 days
1.6 to 2.0	1 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:

```
Not Known
    6 days
Yes 1 days
No 9 days
```

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

1 BD-02-F-01
WAREHOUSI NG

BEDFORDSHIRE

FRENCH'S AVENUE
DUNSTABLE
Edge of Town
Industrial Zone
Total Gross floor area: 6050 sqm
Survey date: THURSDAY 07/03/02
2 BG-02-F-01 LOGISTICS COMPANY
PARC CRESCENT
WATERTON IND. EST.
BRIDGEND
Edge of Town
Industrial Zone
Total Gross floor area: 3050 sqm
Survey date: MONDAY 13/10/14
3 CW-02-F-01 WAREHOUSING
A390
THREEMILESTONE
NEAR TRURO
Edge of Town
No Sub Category
Total Gross floor area: 5150 sqm Survey date: TUESDAY 18/09/07
4 DC-02-F-01 STEEL DISTRIB.
STATION ROAD
STALBRIDGE
Neighbourhood Centre (PPS6 Local Centre)
Village
Total Gross floor area: 9100 sqm
Survey date: FRIDAY 05/10/01
5 EN-02-F-01 WAREHOUSI NG
OAKTHORPE ESTATE
PALMERS GREEN
ENFIELD
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Gross floor area: 13251 sqm
Survey date: WEDNESDAY 19/11/08
6 GC-02-F-01 DISTRIBUTION CEN.
BARRACHNIE ROAD
GARROWHILL
GLASGOW
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Gross floor area: 11504 sqm
Survey date: MONDAY 10/09/01
7 HC-02-F-01 WAREHOUSI NG
MAURETANIA ROAD
NURSLING INDUSTRIAL ESTATE
SOUTHAMPTON
Edge of Town
Industrial Zone
Total Gross floor area: 4000 sqm
Survey date: WEDNESDAY 21/11/07
Survey Type: MANUAL
GLASGOW CITY

Survey Type: MANUAL

8 HO-02-F-02
ASCOT ROAD
FELTHAM
Suburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: 13500 sqm Survey date: THURSDAY 11/09/14
9 KC-02-F-01 FOOD DISTRIB.
HOLBOROUGH ROAD
SNODLAND
Edge of Town
No Sub Category
Total Gross floor area: 7500 sqm Survey date: THURSDAY 20/06/02
10 KI-02-F-01
STATI ONERY
OAKCROFT ROAD
CHESSINGTON NORTH
Town Centre
Industrial Zone
Total Gross floor area: 4661 sqm
Survey date: TUESDAY 08/09/09
11 NW-02-F-01 LOGISTICS CENTRE
TREDEGAR TERRACE
CROSSKEYS
NEWPORT
Edge of Town
No Sub Category
Total Gross floor area: 16275 sqm
Survey date: FRIDAY 12/10/07
12 SC-02-F-04 WAREHOUSI NG
PRETORIA ROAD
CHERTSEY
Edge of Town
No Sub Category
$\begin{array}{cc}\text { Total Gross floor area: } & 4460 \text { sqm } \\ \text { Survey date: TUESDAY } & \text { 27/11/07 }\end{array}$
13 SF-02-F-01 PHARMACY DISTRIB.
BURRELL WAY
BARROW HILL
THETFORD
Edge of Town
Industrial Zone
$\begin{array}{cc}\text { Total Gross floor area: } & 4550 \mathrm{sqm} \\ \text { Survey date: FRIDAY } & 27 / 09 / 02\end{array}$
14 WM-02-F-01 LEGETT LOGIS.
SAMPSON ROAD NORTH
BIRMINGHAM
Edge of Town Centre
Industrial Zone
Total Gross floor area: Survey date: WEDNESDAY

4000 sqm 17/06/09

HOUNSLOW

Survey Type: MANUAL KENT

Survey Type: MANUAL KI NGSTON

Survey Type: MANUAL NEWPORT

Survey Type: MANUAL SURREY

Survey Type: MANUAL SUFFOLK

Survey Type: MANUAL WEST MI DLANDS

15 WO-02-F-02 DISTRIB. CENTRE
WORCESTERSHI RE
COTSWOLD WAY
WORCESTER
Edge of Town
Industrial Zone
$\begin{array}{lc}\text { Total Gross floor area: } & 3824 \text { sqm } \\ \text { Surver } & 10 / 09 / 02\end{array}$
Survey date: TUESDAY 10/09/02
16 WR-02-F-01 WAREHOUSE
UNIT 1-2 PACIFIC PARK
WREXHAM IND. ESTATE
NEAR WREXHAM
Free Standing (PPS6 Out of Town)
Industrial Zone
Total Gross floor area: 9000 sqm Survey date: TUESDAY 18/10/11

Survey Type: MANUAL
This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 02 - EMPLOYMENT/F - WAREHOUSING (COMMERCIAL)
VEHI CLES
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	$\begin{aligned} & \text { No. } \\ & \text { Days } \end{aligned}$	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30	1	7500	0.093	1	7500	0.080	1	7500	0.173
00:30-01:00	1	7500	0.053	1	7500	0.067	1	7500	0.120
01:00-01:30	1	7500	0.013	1	7500	0.027	1	7500	0.040
01:30-02:00	1	7500	0.040	1	7500	0.067	1	7500	0.107
02:00-02:30	1	7500	0.027	1	7500	0.027	1	7500	0.054
02:30-03:00	1	7500	0.053	1	7500	0.067	1	7500	0.120
03:00-03:30	1	7500	0.027	1	7500	0.013	1	7500	0.040
03:30-04:00	1	7500	0.067	1	7500	0.053	1	7500	0.120
04:00-04:30	1	7500	0.053	1	7500	0.053	1	7500	0.106
04:30-05:00	1	7500	0.067	1	7500	0.053	1	7500	0.120
05:00-05:30	1	7500	0.080	1	7500	0.067	1	7500	0.147
05:30-06:00	1	7500	0.067	1	7500	0.053	1	7500	0.120
06:00-06:30	1	7500	0.133	1	7500	0.133	1	7500	0.266
06:30-07:00	1	7500	0.133	1	7500	0.080	1	7500	0.213
07:00-07:30	16	7492	0.068	16	7492	0.053	16	7492	0.121
07:30-08:00	16	7492	0.122	16	7492	0.063	16	7492	0.185
08:00-08:30	16	7492	0.152	16	7492	0.050	16	7492	0.202
08:30-09:00	16	7492	0.153	16	7492	0.067	16	7492	0.220
09:00-09:30	16	7492	0.106	16	7492	0.069	16	7492	0.175
09:30-10:00	16	7492	0.058	16	7492	0.063	16	7492	0.121
10:00-10:30	16	7492	0.069	16	7492	0.068	16	7492	0.137
10:30-11:00	16	7492	0.073	16	7492	0.056	16	7492	0.129
11:00-11:30	16	7492	0.073	16	7492	0.062	16	7492	0.135
11:30-12:00	16	7492	0.065	16	7492	0.064	16	7492	0.129
12:00-12:30	16	7492	0.074	16	7492	0.086	16	7492	0.160
12:30-13:00	16	7492	0.080	16	7492	0.073	16	7492	0.153
13:00-13:30	16	7492	0.092	16	7492	0.112	16	7492	0.204
13:30-14:00	16	7492	0.098	16	7492	0.065	16	7492	0.163
14:00-14:30	16	7492	0.085	16	7492	0.095	16	7492	0.180
14:30-15:00	16	7492	0.067	16	7492	0.079	16	7492	0.146
15:00-15:30	16	7492	0.064	16	7492	0.088	16	7492	0.152
15:30-16:00	16	7492	0.050	16	7492	0.060	16	7492	0.110
16:00-16:30	16	7492	0.061	16	7492	0.090	16	7492	0.151
16:30-17:00	16	7492	0.063	16	7492	0.103	16	7492	0.166
17:00-17:30	16	7492	0.053	16	7492	0.147	16	7492	0.200
17:30-18:00	16	7492	0.043	16	7492	0.146	16	7492	0.189
18:00-18:30	16	7492	0.043	16	7492	0.082	16	7492	0.125
18:30-19:00	16	7492	0.021	16	7492	0.053	16	7492	0.074
19:00-19:30	2	6775	0.030	2	6775	0.030	2	6775	0.060
19:30-20:00	2	6775	0.007	2	6775	0.037	2	6775	0.044
20:00-20:30	1	7500	0.053	1	7500	0.013	1	7500	0.066
20:30-21:00	1	7500	0.040	1	7500	0.053	1	7500	0.093
21:00-21:30	1	7500	0.040	1	7500	0.053	1	7500	0.093
21:30-22:00	1	7500	0.013	1	7500	0.027	1	7500	0.040
22:00-22:30	1	7500	0.067	1	7500	0.053	1	7500	0.120
22:30-23:00	1	7500	0.067	1	7500	0.040	1	7500	0.107
23:00-23:30	1	7500	0.040	1	7500	0.040	1	7500	0.080
23:30-24:00	1	7500	0.040	1	7500	0.040	1	7500	0.080
Total Rates:			3.136			3.120			6.256

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys manually removed from selection:

3050-16275 (units: sqm)
01/01/00-13/10/14
18
0
0
0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE CALCULATION SELECTION PARAMETERS:

Parameter: Gross floor area
Range: 890 to 80066 (units: sqm)
Public Transport Provision:
Selection by:
Date Range: 01/01/02 to 29/07/10
Selected survey days:
Tuesday 5 days
Wednesday 6 days
Thursday 8 days
Friday 5 days
Selected survey types:
Manual count 24 days
Directional ATC Count 0 days
Selected Locations:
Town Centre 1
Edge of Town Centre 1
Suburban Area (PPS6 Out of Centre) 5
Edge of Town 15
Neighbourhood Centre (PPS6 Local Centre) 1
Free Standing (PPS6 Out of Town) 1
Selected Location Sub Categories: Industrial Zone 12
Commercial Zone 4
Residential Zone 2
No Sub Category 6

10 EN-02-F-01 WAREHOUSI NG, ENFI ELD ENFI ELD
OAKTHORPE ESTATEPALMERS GREEN
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Gross floor area: 13251 sqm
11 HC-02-F-01 WAREHOUSING, SOUTHAMPTON HAMPSHI RE
MAURETANIA ROAD
NURSLING INDUSTRIAL ESTATE
SOUTHAMPTON
Edge of Town
Industrial Zone
Total Gross floor area: 4000 sqm
12 HF-02-F-02 SUPERSTORE DI ST., WELWYN GC
BLACK FAN ROAD
PANSHANGER
WELWYN GARDEN CITY
Suburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: 18600 sqm
13 HF-02-F-03 DI STRI BUTI ON CEN., HATFI ELD HERTFORDSHI RE
HATFIELD BUSINESS CEN.
HATFIELD
Edge of Town
Commercial Zone
Total Gross floor area: 80000 sqm
14 HI-02-F-01 WAREHOUSI NG,NEAR I NVERNESS HI GHLAND
B9039
DALCROSS IND. ESTATE
NEAR INVERNESS
Free Standing (PPS6 Out of Town)
Industrial Zone
Total Gross floor area: 890 sqm
15 KC-02-F-01 FOOD DI STRI B., SNODLAND KENT
HOLBOROUGH ROAD
SNODLAND
Edge of Town
No Sub Category
Total Gross floor area: 7500 sqm
16 KI-02-F-01 STATI ONERY, CHESSI NGTON
OAKCROFT ROAD
CHESSINGTON NORTH
Town Centre
Industrial Zone
Total Gross floor area: 4661 sqm
17 LC-02-F-02 WAREHOUSI NG, PRESTON
CHORLEY ROAD
WALTON-LE-DALE
PRESTON
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Gross floor area: 1200 sqm
18 NW-02-F-01 LOGISTICS CENTRE, NEWPORT NEWPORT NEWPORT
TREDEGAR TERRACE
CROSSKEYS
NEWPORT
Edge of Town
No Sub Category
Total Gross floor area: 16275 sqm
LANCASHI RE

LANCASHIRE

19 SC-02-F-04 WAREHOUSI NG, CHERTSEY SURREY
PRETORIA ROAD
CHERTSEY
Edge of Town
No Sub Category
Total Gross floor area: 4460 sqm
20 SF-02-F-01 PHARMACY DI STRI B., THETFORD
BURRELL WAY
BARROW HILL
THETFORD
Edge of Town
Industrial Zone
Total Gross floor area: 4550 sqm
21 TV-02-F-02 ARGOS WAREHOUSE, DARL'TON TEES VALLEY
ROUNDHOUSE ROAD
FAVERDALE
DARLINGTON
Edge of Town
Industrial Zone
Total Gross floor area: 80066 sqm
22 WM-02-F-01 LEGETT LOGI S., BI RMI NGHAMSAMPSON ROAD NORTH
BIRMINGHAM
Edge of Town Centre
Industrial Zone
Total Gross floor area: 4000 sqm
23 WO-02-F-01 SUPERSTORE DIST., WORCESTER WORCESTERSHI RE
WAINWRIGHT ROADSHIRE BUSINESS PARK
WORCESTER
Edge of Town
Commercial Zone
Total Gross floor area: 31416 sqm
24 WO-02-F-02 DISTRIB. CENTRE, WORCESTER WORCESTERSHI RECOTSWOLD WAY
WORCESTER
Edge of Town
Industrial Zone
Total Gross floor area: 3824

TRIP RATE for Land Use 02 - EMPLOYMENT/F - WAREHOUSING (COMMERCIAL)
VEHI CLES
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

Parameter summary

$\begin{array}{ll}\text { Trip rate parameter range selected: } & 890-80066 \text { (units: sqm) } \\ \text { Survey date date range: } & 01 / 01 / 02-29 / 07 / 10 \\ \text { Number of weekdays (Monday-Friday): } & 24 \\ \text { Number of Saturdays: } & 0 \\ \text { Number of Sundays: } & 0 \\ \text { Surveys manually removed from selection: } & 0\end{array}$

TRIP RATE CALCULATION SELECTI ON PARAMETERS:

```
Land Use : 02-EMPLOYMENT
Category : E - WAREHOUSING (SELF STORAGE)
VEHI CLES
```


Selected regions and areas:

02 SOUTH EAST

BU BUCKINGHAMSHIRE 1 days
EX ESSEX
KC KENT 1 days
WS WEST SUSSEX 1 days
04 EAST ANGLI A
CA CAMBRIDGESHIRE 2 days
NF NORFOLK
05 EAST MI DLANDS
NT NOTTINGHAMSHIRE 1 days06 WEST MI DLANDS
WM WEST MIDLANDS 2 days
1 days
WY WEST YORKSHIRE08 NORTH WEST
MS MERSEYSIDE 1 days
10 WALESCF CARDIFF1 days

Filtering Stage 2 selection:

Parameter:	Gross floor area
Range:	2500 to 14000 (units: sqm)

Public Transport Provision:
Selection by:

Date Range: $\quad 01 / 01 / 02$ to 09/09/10

Selected survey days:
Monday 2 days

Tuesday 5 days
Wednesday 2 days
Thursday 4 days
Friday 2 days
$\frac{\text { Selected survey types: }}{\text { Manual count }} 15$ days
Directional ATC Count 0 days
Selected Locations:
Town Centre 1
Edge of Town Centre 2
Suburban Area (PPS6 Out of Centre) 10
Edge of Town 2
$\frac{\text { Selected Location Sub Categories: }}{\text { Industrial Zone }} 9$
Development Zone 1
Residential Zone 1
Retail Zone 1
Built-Up Zone 3
1 BU-02-E-01 BI G YELLOW STORAGE, M.KEYNES BUCKI NGHAMSHI RE
SNOWDON DRIVE
WINTERHILL
MILTON KEYNES
Suburban Area (PPS6 Out of Centre)
Retail Zone
Total Gross floor area: 5700 sqm
2 CA-02-E-01 SELF STORAGE, PETERBOROUGH
WESTFIELD ROAD
PETERBOROUGH
Suburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: 4400 sqm
3 CA-02-E-02 SELF STORAGE, CAMBRI DGECLIFTON WAY
CAMBRIDGE
Suburban Area (PPS6 Out of Centre)
Built-Up Zone
Total Gross floor area: 2675 sqm
4 CF-02-E-01 BIG YELLOW STORAGE, CARDI FF
PENARTH ROAD
CARDIFF
Edge of Town Centre
Industrial Zone
Total Gross floor area: 4200 sqm
5 EX-02-E-02 BI G YELLOW STORAGE, I LFORD ESSEX
EASTERN AVENUE
ILFORD
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Gross floor area:6 KC-02-E-01 EASI STORE, TUNBRI DGE WELLSKENT
LONGFIELD ROAD
TUNBRIDGE WELLS
Edge of Town
Industrial Zone
Total Gross floor area: 5925 sqm
7 KC-02-E-03 BI G YELLOW STORAGE,T.WELLS KENT
LONGFIELD ROAD
TUNBRIDGE WELLS
Edge of Town
Industrial Zone
Total Gross floor area: 5575 sqm
8 MS-02-E-01 BI G YELLOW, LI VERPOOL MERSEYSI DE
MILL LANE
LIVERPOOL
Suburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: 8000 sqm
9 NF-02-E-01 BI X BOX STORAGE, NORWICH NORFOLK
VULCAN ROAD NORTH
HELLESDON
NORWICH
Suburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: 2650
10 NF-02-E-02 BI G YELLOW STORAGE, NORWI CH NORFOLK
CANARY WAY
RIVERSIDE
NORWICH
Suburban Area (PPS6 Out of Centre)
Development Zone
Total Gross floor area: 6830 sqm
11 NT-02-E-01 ACCESS STORAGE, NOTTI NGHAMQUEENS ROAD
NOTTINGHAM
Edge of Town Centre
Built-Up Zone
Total Gross floor area: 14000 sqm
12 WM-02-E-01 SPACES STORAGE, BI RMI NGHAM WEST MI DLANDS
STANIFORTH STREET
NEW TOWN ROW
BIRMINGHAM
Town Centre
Built-Up Zone
Total Gross floor area: 4645 sqm
13 WM-02-E-02 EXTRASPACE, COVENTRY WEST MI DLANDS
101 LOCKHURST LANE
COVENTRY
Suburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: 7000 sqm
14 WS-02-E-01 SELF STORAGE SPACE, BOGNOR WEST SUSSEX
DURBAN ROAD
SOUTH BERSTED
BOGNOR REGIS
Suburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: 3000 sqm
15 WY-02-E-01 SELF STORAGE, HUDDERSFI ELD WEST YORKSHI RE
ST ANDREWS ROAD
ST ANDREWS ROAD
HUDDERSFIELDSuburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: 2500 sqm

TRIP RATE for Land Use 02 - EMPLOYMENT/E - WAREHOUSING (SELF STORAGE)
VEHI CLES
Calculation factor: $\mathbf{1 0 0}$ sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	GFA	Rate	Days	GFA	Rate	Days	GFA	Rate
00:00-00:30	0	0	0.000	0	0	0.000	0	0	0.000
00:30-01:00	0	0	0.000	0	0	0.000	0	0	0.000
01:00-01:30	0	0	0.000	0	0	0.000	0	0	0.000
01:30-02:00	0	0	0.000	0	0	0.000	0	0	0.000
02:00-02:30	0	0	0.000	0	0	0.000	0	0	0.000
02:30-03:00	0	0	0.000	0	0	0.000	0	0	0.000
03:00-03:30	0	0	0.000	0	0	0.000	0	0	0.000
03:30-04:00	0	0	0.000	0	0	0.000	0	0	0.000
04:00-04:30	0	0	0.000	0	0	0.000	0	0	0.000
04:30-05:00	0	0	0.000	0	0	0.000	0	0	0.000
05:00-05:30	0	0	0.000	0	0	0.000	0	0	0.000
05:30-06:00	0	0	0.000	0	0	0.000	0	0	0.000
06:00-06:30	0	0	0.000	0	0	0.000	0	0	0.000
06:30-07:00	0	0	0.000	0	0	0.000	0	0	0.000
07:00-07:30	14	5675	0.009	14	5675	0.001	14	5675	0.010
07:30-08:00	14	5675	0.037	14	5675	0.008	14	5675	0.045
08:00-08:30	15	5497	0.029	15	5497	0.016	15	5497	0.045
08:30-09:00	15	5497	0.046	15	5497	0.027	15	5497	0.073
09:00-09:30	15	5497	0.046	15	5497	0.034	15	5497	0.080
09:30-10:00	15	5497	0.052	15	5497	0.034	15	5497	0.086
10:00-10:30	15	5497	0.046	15	5497	0.039	15	5497	0.085
10:30-11:00	15	5497	0.033	15	5497	0.036	15	5497	0.069
11:00-11:30	15	5497	0.035	15	5497	0.041	15	5497	0.076
11:30-12:00	15	5497	0.055	15	5497	0.051	15	5497	0.106
12:00-12:30	15	5497	0.050	15	5497	0.042	15	5497	0.092
12:30-13:00	15	5497	0.042	15	5497	0.050	15	5497	0.092
13:00-13:30	15	5497	0.050	15	5497	0.059	15	5497	0.109
13:30-14:00	15	5497	0.038	15	5497	0.047	15	5497	0.085
14:00-14:30	15	5497	0.033	15	5497	0.034	15	5497	0.067
14:30-15:00	15	5497	0.055	15	5497	0.046	15	5497	0.101
15:00-15:30	15	5497	0.050	15	5497	0.055	15	5497	0.105
15:30-16:00	15	5497	0.038	15	5497	0.035	15	5497	0.073
16:00-16:30	15	5497	0.040	15	5497	0.045	15	5497	0.085
16:30-17:00	15	5497	0.033	15	5497	0.045	15	5497	0.078
17:00-17:30	15	5497	0.025	15	5497	0.038	15	5497	0.063
17:30-18:00	15	5497	0.008	15	5497	0.029	15	5497	0.037
18:00-18:30	14	5675	0.011	14	5675	0.020	14	5675	0.031
18:30-19:00	14	5675	0.014	14	5675	0.019	14	5675	0.033
19:00-19:30	2	4775	0.031	2	4775	0.042	2	4775	0.073
19:30-20:00	2	4775	0.010	2	4775	0.073	2	4775	0.083
20:00-20:30	0	0	0.000	0	0	0.000	0	0	0.000
20:30-21:00	0	0	0.000	0	0	0.000	0	0	0.000
21:00-21:30	0	0	0.000	0	0	0.000	0	0	0.000
21:30-22:00	0	0	0.000	0	0	0.000	0	0	0.000
22:00-22:30	0	0	0.000	0	0	0.000	0	0	0.000
22:30-23:00	0	0	0.000	0	0	0.000	0	0	0.000
23:00-23:30	0	0	0.000	0	0	0.000	0	0	0.000
23:30-24:00	0	0	0.000	0	0	0.000	0	0	0.000
Total Rates:			0.916			0.966			1.882

Parameter summary

$\begin{array}{ll}\text { Trip rate parameter range selected: } & 2500-14000 \text { (units: sqm) } \\ \text { Survey date date range: } & 01 / 01 / 02-09 / 09 / 10 \\ \text { Number of weekdays (Monday-Friday): } & 15 \\ \text { Number of Saturdays: } & 0 \\ \text { Number of Sundays: } & 0 \\ \text { Surveys manually removed from selection: } & 0\end{array}$

KS404EW - Car or van availability

ONS Crown Copyright Reserved [from Nomis on 4 February 2018]

population	All households; All cars or vans
units	Households
date	2011
rural urban	Total

	ward011qs:E05001390 : Batley East	
	number	$\%$
All categories: Car or van availi	6,820	100.0
No cars or vans in household	2,099	30.8
1 car or van in household	3,112	45.6
2 cars or vans in household	1,294	19.0
3 cars or vans in household	244	3.6
4 or more cars or vans in houst	71	1.0

ward011qs:E05001398: Dewsbury East

number	$\%$
7,930	100.0
2,421	30.5
3,512	44.3
1,633	20.6
282	3.6
82	1.0

ward011qs:E05001413: Ardsley msoa2011:E02002437: Leeds and Robin Hood

number	\%	number	\%
9,179	100.0	2,445	100.0

1,430	15.6	260	10.6

3,988	43.4	931	38.1

3,129	34.1	993	40.6

486	5.3	192	7.9

QS701EW - Method of travel to work

ONS Crown Copyright Reserved [from Nomis on 31 January 2018]

population	All usual residents aged 16 to 74
units	Persons
date	2011
rural urban	Total

Method of	E05001390 :	E05001398:
Travel to	Batley East	Dewsbury East
Work		

All categories: Method of travel to work				
Underground, I	7	0.10%	2	0.02%
Train	289	4.13%	274	3.28%
Bus, minibus o	416	5.94%	725	8.67%
Taxi	114	1.63%	133	1.59%
Motorcycle, scr	34	0.49%	76	0.91%
Driving a car ol	4,417	63.05%	5,486	65.61%
Passenger in a	625	8.92%	677	8.10%
Bicycle	66	0.94%	90	1.08%
On foot	1,037	14.80%	898	10.74%
total	7,005	100.00%	8,361	100.00%

E05001413:
 Ardsley and
 Robin Hood

8	0.07%
162	1.43%
1,047	9.23%
54	0.48%
99	0.87%
8,590	75.74%
798	7.04%
119	1.05%
464	4.09%
11,341	100.00%

2011 super output areas - middle layer E02002437 : Leeds 108

5	0.15%
29	0.89%
228	7.01%
8	0.25%
31	0.95%
2,618	80.50%
215	6.61%
26	0.80%
92	2.83%
3,252	100.00%

APPENDIX F

LCC Sites for Concern Extract

+ Crashmap Screen Print

A653 Dewsbury Road j/w A650 Bradford Road (Tingley Roundabout), Tingley

Ref No.: LSC072 Rank this year: 3 (last): 3 Grid Ref: 428033/426396

Description of Site

The site is a large signalised roundabout to the south of Leeds giving access to main Bradford, Leeds, Wakefield and Dewsbury routes, together with the grade-separated M62 motorway. The layout includes a direct link through the central island to carry traffic eastbound from the A650 and A653. An extra lane is provided on the A653 approach from Leeds and yellow box markings are in place on the circulatory carriageway, which highlight the conflict points. Two historic in-depth studies have been completed here. The first identified a pattern of signal violations involving traffic "chasing" a green signal, and continuing against red lights. The second found that the frequency of signal violations had reduced and, whilst the majority were still located in the same place, the previous "chasing" pattern was no longer present.

Accident Record

Year	Slight	Serious	Fatal	Total
2012	11	1	0	$\mathbf{1 2}$
2013	4	0	0	4
2014	2	0	0	2
2015	8	0	0	$\mathbf{8}$
2016	3	1	0	$\mathbf{4}$
Total	$\mathbf{2 8}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{3 0}$

Accident Analvsis

Eighteen of the accidents were signal violations. At least 9 of these were identified as having occurred at the eastern extent of the above-described direct link through the central island. Six were recorded as having occurred at the western extent, with 3 having undetermined locations. All of these accidents were of Slight severity. Five accidents involved loss of control events (including 3 motorcyclists) and there were 4 lane changing conflicts. The remaining 3 accidents were all disparate types.

Recommendations

It is apparent that the previously identified issues with signal violations are still occurring, however these being of low severity, mitigates against the introduction of red light violation cameras. There is the possibility, in the next financial year, of widening the westbound off slip, and simultaneous limited widening of the circulatory area. A review of signal timings also appears warranted.

